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ABSTRACT

Explicit solutions to the Cauchy problem for the linearized KdV

equation are constructed when the initial data is integrable. The method

is analogous to the Fourier decomposition for a constant coefficient

equation and uses the connection between the one-dimensional Schr dinger

equation and the KdV equation, as discovered by Gardner, Greene, Kruskal,

and Miura [2]. An expansion theorem expressing any integrable function in

terms of derivatives of squared Schr5dinger (generalized) eigenfunctions

is proved. These functions evolve according to the linearized KdV equation,

hence the expansion of the initial data leads to a generalized solution

of the linearized KdV equation. Under suitable restrictions on the initial

data, the solution constructed is classical. The proof of the expansion

theorem may be interpreted as the skew-adjoint analogue of the more familiar

process of simultaneously diagonalizing two self-adjoint operators.
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SIGNIFICANCE AND EXPLANATION

The Korteweg-deVries equation (KdV for short) arises as an approxi-

mation in many non-linear wave problems with weak dispersion and weak non-

linearity. We present a method for constructing explicit solutions of the

linearized KdV equation. This equation is of importance in studying the

effects of perturbations of the KdV equation. The method relies on the

connection between the KdV equation and the one-dimensional Schradinger

equation, as discovered by Gardner, Greene, Kruskal, and Miura [2]. An

expansion of the initial data in terms of derivatives of squared (general-

ized) eigenfunctions of the Schr~dinger equation provides a decomposition

of the solution resembling the use of Fourier transforms in solving constant

coefficient equations. For the linearization about the zero solution of

the KdV equation, the analogy holds in the strict sense, as our expansion

reduces to the usual Fourier transform.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



COM4PLETENESS OF DERIVATIVFES ()F SQUAPK SJ1 OIC)I
EIGENFUNCTIONS AND EXPLICIT SOLUTIONS OF THE LINEARIZED KdV EQUATION

Robert L. Sachs

1. INTRODUCTION

In this paper, we present an explicit solution to the Cauchy problem

for the linearized KdV equation:

u Ut + ux - 6(qu)x 0

() {u(x,0) = (x)

where q(x,t) is a solution of the KdV equation C(1.5) below). our

method expresses the solution as a superposition of particular solutions

and utilizes a completeness theorem which we discuss below. The particular

solutions we choose may be thought of as derivatives of q(x,t) with

respect to the scattering data for the Schr~5dinger equation with potential

q(x,t). Hence we sketch briefly the inverse scattering method of solvinq-

the KdV equation, as discovered by Gardner, Greene, Kruskal, and Miura [2].

If we cunsider the one-dimensional Schr~5dinger equation with potential

(11d f + Q(x)f = k 2f
dx2

and define the Jest solutions f +(x,k) by their asymptotic behavior

(1.2) f ikx as x -''

- ikx -

(.lT(k) f (x,k) =f +(x,-k) + R(k) f +(x,k)

l*on!; tred, by th- r 1i ted ,t dte!; Army uinder Contract N4o. DAA29-80-C'-h ill
in Iby in A.M.. . )(.;t(1fl-t()t it ;t~ PIIwhp



which defines the transmission coefficient T(k) and the reflection coef-

ficient R(k) implies T(k) is meromorphic in Im k > 0 with finitely

many poles, all on the imaginary axis. The completeness theorem mentioned

above expresses anyintegrable function in terms of (f)+2)(x,k), (f_2)'(x,k)

and a sum of discrete terms related to the poles of T(k). (While we could

use (1.3) to eliminate (f 2)I(x,k), it is more convenient not to do so.)

We prove the theorem by solving the equation

- 4Q' - 2Q' + 4k 2 '

for ' and integrating the 'resolvent'.

If we now consider a one-parameter family of Schr5dinger operators

d2

(1.4) L(t) E - d2 + q(x,t)
dx

where the time evolution of q(x,t) is given by the KdV equat-on

(1.2) qt + qxxx - 6qqx = 0

then it turns out [2) that for any t, L(t) is unitarily equivalent to

L(0). This implies that the spectrum of L(t) is invariant. Moreover,

the scattering data associated with the operators L(t) evolves in a

very simple manner. Zakharov and Faddeev (151 interpret the above facts

in the context of completely integrable Hamiltonian systems and show that

the eigenvalues of L and k times the logarithm of JT(k) 12 for k

real form action variables with appropriate conjugate angle variables.

In (15], a formal calculation appears which expresses the infinitesmal

variation of q(x,0) in terms of variations of the scattering data. This

formula suggests consideration of x-derivatives of the squared eigen-

functions of (1.1) with their induced time dependence as solutions to the

linearized KdV equation. The fact that these derivatives satisfy the

linearized KdV equation for smooth potentials already appears implicitly

in [2], Theorem 3.6. A related expansion for the Zakharov-Shabat eigen-
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value problem appears in Kaup [4]. Discussions of perturbations using

the inverse scattering formalism appear in [5], [9] (for the sine-Gordon

equation), and [10]; for an application of this result to the problem of

water waves in a canal, see [12]. Squared eiqenfunctions and their deriv-

atives also play an important role in the theory of the periodic KdV

equation [8].

The completeness theorem is pyoved in Section 2 below, while in

Section 3, the time evolution of the eigenfunctions and the solution of

(*) are discussed. Some of these results appear in the author's doctoral

dissertation (N.Y.U., October 1980). The advice and encouragement of his

advisor, JUrgen Moser, is gratefully acknowledged.

We also remark that semi-group methods [3] will yield a solution of

2.
(*) for L initial data, so tor a large class of initial data, we have

constructe9 the "evolution operator" explicitly.



2. L -COMPETENESS OF DERIVATIVES OF SQUARED SCHRODINGER EIGENFUNCTIONS

After introducing some notation and results from the scattering theory

of the one-dimensional Schr6dinger equation, we state and prove an expan-

sion theorem for derivatives of squared Schr6dinger eigenfunctions. (We

shall use the term eigenfunction to include generalized eigenfunctions as

well as bona fide L2 solutions.)

Consider the Schr6dinger equation

(2.1) - f''(x,k) + Q(x) f(x,k) = k 2f(x,k)

for k real. Our notation shall be:

f' (x,k) = a f(x,k)

f(x,k) = f(x,k)ak

We assume the potential Q(x) satisfies

(2.2) IIQ f f (1 + x2) Q(x) l dx <

The fundamental discovery of Gardner, Greene, Kruskal, and Miura [2], later

formulated abstractly by Lax [7], is that if q(x,t) evolves according

to the KdV equation, the spectrum of the Schrodinger equation (2.1) with

potential q(x,t) remains fixed in t and the associated scattering data

evolves in a very simple manner. We shall use this information below,

but first introduce some notation and basic facts about scattering theory

for (2.1). This information (and much more) may be found in [1.

Let f +(x,k) denote the Jost solutions of (2.1)--

i.e. f + (x,k) e ikx as x - +-, f_(x,k) ' e-ikx as x +

and both satisfy (2.1). The transmission coefficient, T(k), as defined

in (1.3) above, is represented in terms of the Wronskian of f , f by:
+

(2.3) 1 _1 f+ - - +
(2.3) 1 1__ [f (f x,k), f (x,k)l =+ +

T(k) 2ik + 2ik

-4-



Formula (2.3) and the normalization of f +, f_ imply that T(k) is

meromorphic in the upper half-plane Im k > 0 with poles at k= j

j 1. ,N where each energy -$ 2 is a bound state energy in (2.1).

N is finite by a classical estimate assuming (l+ixF)1(2(x)l is inteqrable.

T(k) is also continuous and nonzero for real k # 0. For notational

ease, we also introduce for j = 1, ... ,N the following pair of fuin-

tions:

(2.4) F.(x f + x2i$.) ; G.(x) = c f +(X'i .g.(W

where g.(x) E' dk [(xik) f x~% (x,kli

and c. is chosen so that fJF.(x) G.(x) dx = 1 for j=l,. . ,N. The

expansion theorem mentioned above is:

Theorem 2.1 Suppose (2(x) satisfies (2.2). If 4f(x) is continuous and

1
in L , then

=+i dk 2
(2.5)(a) OWx = lrn f Tj-,-kT (k). f K(x,y,k) 4>(y) dy

6+0 .OC+iE

N W
+ Y f [F!(x) G.(y) -G!(x) F.(y)] (y) dy

j=l -

and

T2 () 2 22
(2.5) (b) (x) = f f If [()'(x,k) f_ yk f '( (y,k) (yk)I (y)U:i

+ - .4+

N
+ I f [ F.(x) G.(Y) - G (x) F (y)I (Y) I y

where the kernel K(x,y,k) is defined as:



(f(x,k)f2(y,k) - h(x,k)h(y,k)) for y < x

(2.6) K(x,y,k) E

a 2 2s- (h(x,k)h(y,k) - f (x,k)f (y,k) for y > x

with h(x,k) E f+(x,k)f_(x,k).

tikx
We remark that for q = 0, f +(x,k) = e and the above expansion

reduces to the ordinary Fourier transform. The latter representation (2.5) (b)

is more convienient in applications while (2.5) (a) is central to the proof

of the theorem. Before presenting the proof, we discuss the choice of the

particular kernel K(x,y,k) of (2.6).

If f and g are both C3 solutions of the Schrbdinger equation (2.1)

for the same energy k , then their product f • g is a solution of the

third-order equation:

(2.7) Wt - 4Qp' - 2Q' = - 4k 2'

Two linearly independent solutions of (2.1) generate three independent

2 2
solutions of (2.7) e.g. f , fg, g . We choose f+ (x,k), T(k) f (x,k).

Then, solving the inhomogeneous form of (2.7) for a function (x) by

variation of parameters leads to an expression for P in terms of .

The kernel K(x,y,k) is the 'Green's function' for this problem. Differ-

entiating, we obtain formally

(2.8) = (D2  - 4(Q - k 2 ) - 2Q'D-I )-

which we integrate as though it were a bona fide resolvent and obtain a

multiple of the identity. The calculation of this integral is the content

of the following:

Lemma 2.2. Let F be the semicircle in the upper half-plane of radiusR

R t ravnr.;Qd from -R to R. Thtn:

-6-



(2.9) 1im K(Xyk) 0(y) dy dk

R--

R

= f(x) for all 0 which are continuous with 4 E LI.

Postponing the proof of Lemma 2.2 momentarily, we show that Lemma 2.2

implies Theorem 2.1.

Proof of Theorem 2.1, given Lemma 2.2: Apply Cauchy's theorem. For

Im k > 0 , the integrand in k has poles only at the poles of T (k);

an easy calculation shows that for k = i8 I , . ., i8N  (recall, the_ NN

bound state energies are 2< - N- < . . . <  2 < 0) , the pole
N N-1

T(k) is simple [1]. Thus the integrand we consider has double poles at

k =  ia., j 1, .... N.J

For k = i8. , there is a constant a. such that f (x,i j)J J - J

Aif +(x,i 3). Thus the quantities:

2 2
(2.10) f+ (x,k) f (y,k) - h(x,k) h(y,k) and

f+(x,k) f_(y,k) - f_(x,k)f +(y,k)

vanish identically in x,y when k = is..3

Let A. be the residue of T(k) at k = i6.. Then the residue of the
I J

left-hand side of (2.9) at k = i . is precisely:

A - d 
-(2.11) 2i i - K(x,y,k) 0(y) dy

3

A2

L! f I [ 2 L (Di6j f (ypi63 )g.(y)
3 _-

- f (x,isjlgj(x) f2 (y,ij_)j (y) dy

-7-



where we recall g.(x) [f (xk)-'.f (xk)]
j dk - 3+ k=it3.

The right-hand side of (2.11) comes from replacing f (x,i.) by
- J

a.f (x,i$.) after using the remark in (2.10). Now we deform the semicircle
i +  3

to the real k-axis. By our definitions above, the deformation contributesN I
the terms I {(F(x)G (y) - G!(x)F (y)) p(y) dy which appear in the

j l I J

conclusion of Theorem 2.1, in addition to the integration along the real

k-axis. We also remark that despite appearances, neither real k integral

has a singularity at k=0. This follows from the fact that either

(i) f +(x,0) and f_(x,0) are linearly dependent, which by the same

remark as above in (2.10) implies K(x,y,k) vanishes at least linearly

in k as k - 0 in Im k > 0, or (ii) f+ (x,0) and f_(x,0) are

linearly independent, so by (2.3), T(k) c ak + o(k) as k - 0. In

either case, there is no pole at k = 0. (See [1] for a further discussion

of phenomena at k = 0 in scattering theory.) Thus we have proved (2.5) (a)

assuming Lemma 2.2. To obtain (2.5) (b), we remark that the difference be-

tween the two k-integrals integrates to 0.

The difference between (2.5) (a) - (2.5) (b) is precisely:

W a,

dk f(x,y,k) (y) dy
4Trikj

where K(x,y,k) = sgn(x-y)y- L ) +(x,k)f (y,k) - T(k)f_(x,k)f+(y,k

Using (1.3) to eliminate f_(x,k), f (y,k), we see that K(x,y,k) is an

even function of k , so the integral vanishes. This proves (2.5)(b).

To complete the argument, we now prove Lemma 2.2. Consider

(2.12) 1 1 f T2 (k) K(x,y,k) fly) dy dk(2 12 R 27-- k

R -}

-8-



+ikx
Write f +(x,k) = m +(x,k) e We shall make use of the following estim, t

taken from Deift-Trubowitz [1], which hold for all k in Im k > 0:

I C2
(2.13) i) Im+(x,k)-ll < exp [C1/Ikl} TkT

(ii) lm +(x,k) l < C 3!(l+jk I)

(iii) T(k) = 1 + 0(T7) as I k I

In [1] it is. also shown that m+-1 are Hardy functions; in particular,

they are analytic in Im k > 0. Recalling the definition of K(x,y,k)

given by (2.6), we define:

2(1) 1 d T  2 k)-x-2
+ 2iu fk 2ik+ (x'k)m (y, k)

x

(2.14) 1(2) - 1 rdk T2(k) x 2f kx~'(~~ 2 (y, k) e ik (x.)
R 21i k f-- +ki

R

- h'(x, k) h(y, k)] (y) dy

S [h'(xk)h(yk)-2m (xk)m(xk)m2 (y,k) e (k. I+
x

Thus I. ~() + 1(2).
R R R

(2)By estimates (i), (ii), (iii) in (2.13), since I R contains term:;

RR

which have a factor m(x,k) and m (xk) is uniformly bounded for
S-- -

I i c>0 w av teesimt



(2.15) 1R (2 ) < C for all R > R sufficiently large, where

C is independent of R.

Moreover, by (2.13) (i), (iii), m (x,k) 1 + 0(i). T(k) = 1 + 0()
+R R

(1) lr k 2ik(x-y)
for k= R so =f 2ik 0(y) dy

R

+ 2ik e 2 ik(x-y) (Y) dy

+ 0(1)
R

The first terms converge to f(x) as in the usual proof of Fourier complete-

ness [141 and the lemma is proved by taking R-.

Remarks: (i) The expansion theorem above bears a strong resemblance to that

of the Fourier transform for L1  functions. However, since the underlying

process is the "simultaneous diagonalization" of the two skew operators

d dnd d 3 + 2 1d Q + 2Q , the analoque of the Fourier L2  theory

does not exist if Q i 0. If we define

(2.16) '+(k) = f(y)f+ (y,k) dy

the natural version of the Plancheral formula in this case relates the

skew bilinear form fo '(x) q(x) to the standard symplectic pairing

~:(k) L0 1 [4+(k1}
(ii) We also note that the skew operator -D3 + 2DQ + 2QD (D =

dx

was used by Lenard to recursively generate the KdV conservation laws [2].

It seems to play a crucial role in many aspects of the KdV theory -- e.g.

it is useful in proving that the inteqrals are in involution.

-10-



3. APPLICATION OF THEOREM 2.1 TO THE CAUCHY PROBLEM FOR THE LINEARIZED
KdV EQUATION

The expansion of f(x) given by Theorem 2.1 will lead directly to

a method for solving the Cauchy problem for the linearized KdV equation:

(*) ut + u - 6(qu)x 0; u(x,0) = x)

with c satisfying the hypotheses of Theorem 2.1. As the potential q(x,t)

in the Schrdinger equation

_ fit + qf = k2 f

evolves according to the KdV equation, the corresponding eigenfunctions

evolve in time. Gardner, Greene, Kruskal, and Miura (2] observed that

the squares of the eigenfunctions satisfy the formal adjoint of the linear-

ized KdV equation (which they called "the associated linear equation"),

namely:

(3.1) vt + v - 6qvx = 0xxx

from which it follows that u E v satisfies
x

(3.2) ut + uxxx - 6(qu)x = 0 , the linearized KdV equation.

In view of this fact, the expansion of Theorem 2.1 may be extended to

include the time evolution of the eigenfunctions. As we shall see below,

this extension is the solution of the Cauchy problem (*).

We begin by developing some necessary preliminary facts:

Lemma 3.1 The functions g(x) 1 = d- [f(x,k)-a f (x,k)], k = i6. are

(unbounded) solutions of the Schr?dinger equation (2.1) with k = -8

Proof: Differentiating (2.1) with respect to k , we obtain an equation

for (d/dk)f (x,k) = f (x,k):+ +

-11-



(3.3) f+ (q - k2 )f+ 2kf+

Consider g [f - + at k 9i: g.(x) satisfies

g3 = (q + aj 2 )g - 2a(f_(x,iaj) - cjf (x,iBj))
J=-(q+J+2

= (q + a )g by our choice of a..
J J 3

Remark: gi(x) is exponentially increasing as jxJ - =; however, the

product f +(x,i .) gj(x) is bounded.

We now discuss the result in [2] mentioned above, and sketch the proof.

Lemma 3.2 (cf. equation (2.19) of [21).

Let ' be a solution of the Schr?3dinger equation (2.1) with potential q(x,t)

evolving according to the KdV equation.

Then the function

(3.4) R Pt + Pxxx - 3(q + k2 )x

is also a solution of the Schr6dinger equation with potential q(x,t).

Sketch of the proof: Use the equation '" = (q-k2 )' to express q in

terms of '. Substitute into the KdV equation and simplify the resulting

expression, obtaining the equation R" - (q-k 2)R = 0 after eliminating

a factor of '.

Remark: The chief use of Lemma 3.2 is to show that R, for suitable

eigenfunctions ', is in fact 0. In particular, we have:

Corollary 3.3 The expression R vanishes if we choose any of the follow-

ing eigenfunctions for ':

(i) f+ (x,k,t) % exp {+i (kx+4k t)} as x -* + m, t fixed;

(ii) + (x,isj,t)

(iii) q>(x,t) - - [f_ (x,k,t) - f + , t)i
12k=i

-12-



Sketch of proof (see [2), Theorem 3.6): Consider R in each case. L"

our choice of asymptotics, we have R E 0 since no other solution of the,

Schrbdinger equation with that type of decay exists, namely R 0 0 as

x -) + - in (i), exp{(I3.x - 4 3 tl}R - 0 in (ii), (iii) as x-." 3 jt'

Thus from the spectral theory of the Schrbdinger equation, R -0 in each

case.

Lemma 3.4 Suppose 91,42 are two (not necessarily independent) solutions

of the Schr~dinger equation for the same eigenvalue. If yt +t xxx

- 3(q + k 24x = 0 fur 4= 4j, j = 1,2, then the product 4'1 2 is a

solution of the adjoint equation:

+ v - 6qvx  0xxxx

Proof: A direct calculation:

12 ) t + 4214 2)xxx - 6q( 1 2) x

= 1(42t + 42xxx - 6q4 2 x ) + 2(41t +4ixxx - 6 q x )

+ 3 1 2 + 321 12

x xx xx x

= 4'1 4'2 + %1 - 3(q+k 2)42t xxx x

+ 4 2( 4 1t + 1x - 3(q+k 2)1x1)

= 0, where we used the Schr6dinger equation to eliminate

the second derivatives.

Remarks: (i) An alternate derivation of these facts may be given using

the following idea of Tanaka [13]: The KdV equation may be written in the

Lax [7] form

dL
(3.5) ! [B,L]dt

2
where L(t) is the operator - -- + q(x,t) and B(t) is the skew omelitor

dx

-13-



d3  d d
-4 d + 3q(x,t ax + 3 d q(x,t)

The time derivative of the Schrbdinger equation (2.1) and (3.5) implies

(3.6) L(ft - Bf) = k 2(ft - Bf).

ikx
Choosing f = f +(x,k,t) - e as x + for t fixed and analyzing the

asymptotic behavior of f - Bf as x - + for t fixed implies

3
(3.7) (f+)t - B(f+) = 4(ik) (f+)

4ik t

so O(x,k,t) F e - f+ (x,k,t)

satisfies

ikx + 4ik t

(3.8) - Bi = 0 , i e as x + + - for t fixed

-4ik3 t(a similar argument holds for e % f_(x,k,t)). Using the Schrdinger

equation (2.1), a simple calculation as in Lemma 3.4 above shows that

products (with the same values of k 2 ) of solutions of (3.8) satisfy the

adjoint equation

v t + vxxx - 6qvx = 0.

(ii) If q(x,t) is a classical solution of the KdV equation, the formal

calculations above are sensible-- i.e. the eigenfunctions possess the

necessary derivatives. This follows from the inhomogeneous form of the

Schr~dinger equation which these derivatives satisfy.

Using these facts, we make the following definitions (extending (2.4)

to include time dependence):

-14-



ikx+4ik3 tt+(x,k,t) e as x - + , t fixed

f(x,k,t) 'n, e ik~k~ as x + - , t fixed

(3.9) f + satisfy (2.1) with potential q(x,t)

2
F (x,t) = f+ (x,iSjt)

Zj(x,t) = c f+(x,iajlt) J (x,t)

The obvious candidate for the solution of (*) is the function u(x,t)

defined as follows:

00

( dkT 2 (k ) [ (2 (2)
(3.10) u(x,t) T j 4ik -(k) -2

_W0

+ I [Fj'(x,t)Gj(y,0) - Gj'(x,t)Fj(y,0)] c(y) dy
j=lf

where +(k) are defined in (2.16) above. By Lemma 3.4, all of the

functions of (x,t) appearing on the right-hand side of (3.10) satisfy

the linearized KdV equation. Thus we have proved:

Lemma 3.5 The function u(x,t) defined by (3.10) above satisfies the

linearized KdV equation:

I u t +-u - 6(qu) = 0
(*)xxx

u(x,o) = 4(x)

in the sense of distributions.

To prove that u(x,t) is a classical solution of (*) for t > 0

we need some additional smoothness and decay on f(x) , the initial data.

The situation is completely analogous with the Fourier transform solution

of the Airy equation:

-15-



(3.11) wt + = 0
t xxx

The x-decay of is needed to have (k) be differentiable while smooth-

ness of relates to integrability of k a$+(k) for 0 < a < 2. As in the

case of (3.11), one can prove the following:

Theorem 3.6 The function u(x,t), given by (3.10) above, is a classical

solution of the linearized KdV equation for t > 0 if

(i) (x) has four continuous derivatives.

(ii) As Jxj -, ar (x) = o(IxI - 4) for r = 0,1,2,3,4.
x

Sketch of proof: Using (i) and the definition of $+(k), we integrate

by parts four times with respect to x , which implies, as Ikl a,

(k) = 0(jk-4. Also, by (ii), (k) are C. Thus u(x,t) has two

continuous derivatives with respect to x. As in Murray [11], the factor

k 2  is written as x + 12k2t x , where the first term is a multiple
S2ik(x+4k2t)

of the k-derivative of the exponentials e . Integrating by

parts in k , we find that u(x,t) has four continuous x-derivatives.

Repeating the argument, we obtain six x-derivatives. From the linearized

KdV equation, this implies ut  is continuous, hence it is a classical

solution. The only difference between this case and the Airy equation

(3.11) is the presence of the added factors

2+2ik (x+4k t)1P +(x,k,t) = f+(x,k,t) e

and these do nct affect the necessary estimates.

A fuller discussion and an analysis of asymptotic behavior is presented

or the N-soliton linearization in [12], where the perturbation theory for

the problem of water waves in a canal is discussed. The KdV equation was

(irst derived to model precisely this situation [61.
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